

The Galileo Single Frequency Ionospheric Correction Algorithm

B. Arbesser-Rastburg Head, Wave Interaction & Propagation Section ESA-ESTEC bertram@tec-ee.esa.int

Contents

- The need for ionospheric correction
- The GPS Single Frequency algorithm
- The GALILEO Single Frequency Algorithm
- Algorithm validation
- Conclusions

The Need for Single Frequency (SF) Ionospheric Correction

- It is estimated that about 75% of all GPS receivers are Single Frequency receivers.
- Multi frequency Galileo receivers will have a fall-back mode to single frequency operation (in case of interference)
- Single Frequency receivers require external information for correction of the variable ionospheric delay

Position Error Contributions

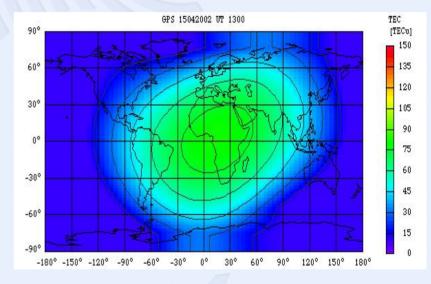
EPE = 2 x HDOP x UERE

EPE: Estimated Position Error (2D rms) [m] HDOP: Horizontal Dilution Of Precision UERE: User Equivalent Range Error [m]

IN GPS (example):	
Ephemeris error:	2.1 m
Sat Clock error:	2.1 m
Ionosphere error:	4.0 m
Troposphere error:	0.7 m
USER RANGE ERR (URE)	
Multipath error:	1.4 m
Receiver error:	0.5 m
USER EOUTP ERR (UEE)	

$$UERE = \sqrt{(URE^2 + UEE^2)}$$

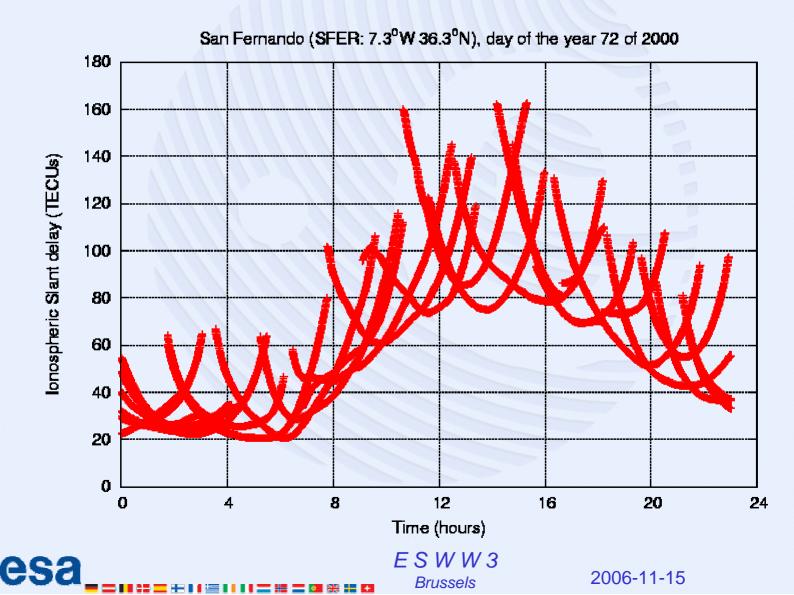
The biggest error for Single Frequency navigation receivers is the ionosphere error.


The GPS ICA Algorithm

$$\Delta t_1 = A_1 + A_2 \cos \left[2\pi (t - A_3) / A_4 \right]$$

Where:

 $A_{I} = 5 \times 10^{-9} \text{ s}$ $A_{2} = \alpha_{1} + \alpha_{2} \quad \varphi_{\text{IP}} + \alpha_{3} \, \varphi_{\text{IP}}^{2} + \alpha_{4} \, \varphi_{\text{IP}}^{3}$ $A_{3} = 14:00^{\text{ h}} \text{ local time}$ $A_{4} = \beta_{1} + \beta_{2} \quad \varphi_{\text{IP}} + \beta_{3} \, \varphi_{\text{IP}}^{2} + \beta_{4} \, \varphi_{\text{IP}}^{3}$ all α_{i} and β_{i} are transmitted


 $t = t_{UT} + \lambda_{IP} / 15$ t_{UT} is UTC, IP is Iono Point λ_{IP} is longitude of IP φ_{IP} is the spherical distance of IP from geomagnetic pole

See: Klobuchar, J.A., (1996) "Ionospheric Effects on GPS", in Parkinson, Spilker (ed), "Global Positioning System Theory and Applications, pp.513-514.

Slant TEC

Galileo Iono Pseudorange Error

$$\sigma_{iono} = \frac{40.3}{f^2} \cdot VTEC \cdot F(\varepsilon) \cdot \Delta M$$

Where

f : carrier frequency [Hz] *VTEC:* vertical TEC [el /m²] ΔM : fractional error of model TEC *F*(ε): obliquity factor

$$F(\varepsilon) = 1 + 16 \cdot \left(0.53 - \frac{\varepsilon}{180}\right)^3$$

Where

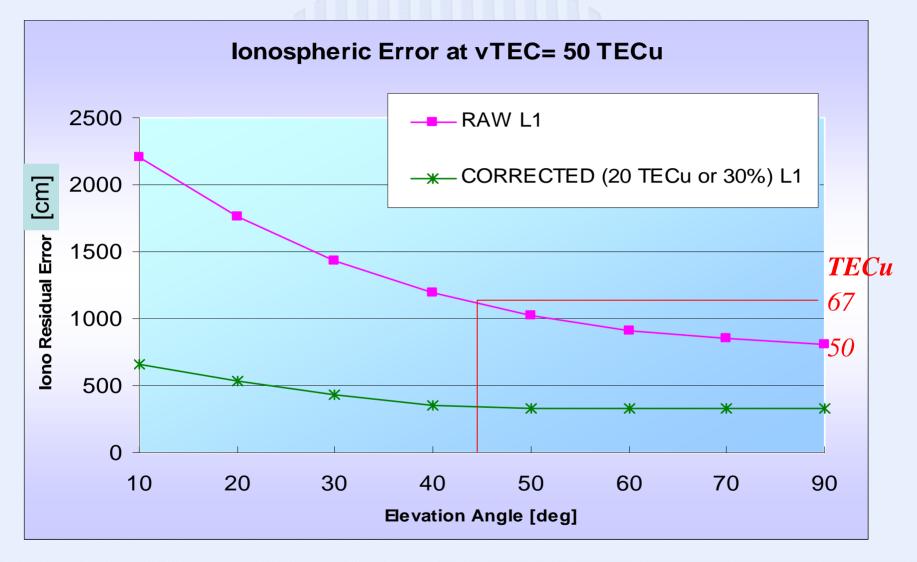
 ε = elevation angle [deg] STEC = VTEC x F(ε) Integrated Slant TEC

Specification: The residual error is not to exceed 20 TECu or 30 % (whichever is larger) $STEC \ge 66.7 \Rightarrow \Delta M = 0.3$ $STEC < 66.7 \Rightarrow \sigma_{iono} = 20 f^{2}/40.3$ (TUSREQ Definition)

ESWW3 Brussels

SF Algorithm - Specified Performance (1) Nominal Iono: VTEC=50, Max Iono: VTEC=120

VTEC	UNCORRECTED (RAW)			CORRECTED (20 TECu or 30%)		
50		L1	E5a		L	E5a
Elev [deg]	sTEC [TECu]	Delay [cm]	Delay [cm]	sTECcorr [TECu]	Delay [cm]	Delay [cm]
10	135.4	2199	3944	40.6	660	1183
20	108.8	1767	3168	32.6	530	950
30	88.4	1435	2573	26.5	430	772
40	73.3	1191	2135	22.0	357	641
50	62.8	1020	1830	20.0	325	582
60	56.1	911	1633	20.0	325	582
70	52.2	848	1521	20.0	325	582
90	50.0	812	1457	20.0	325	582


L1=1575.42 *E5a*= 1176.45 *MHz*

ESWW3 Brussels

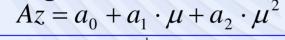
2006-11-15

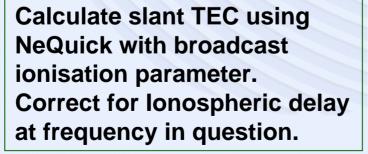

8

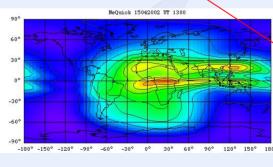
SF Algorithm - Specified Performance (2)

ESWW3 Brussels 2006-11-15

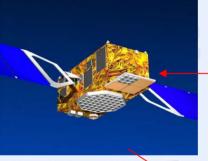
Galileo Single Frequency Iono algorithm

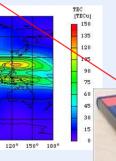

Optimise effective ionisation parameter for NeQuick to match observations

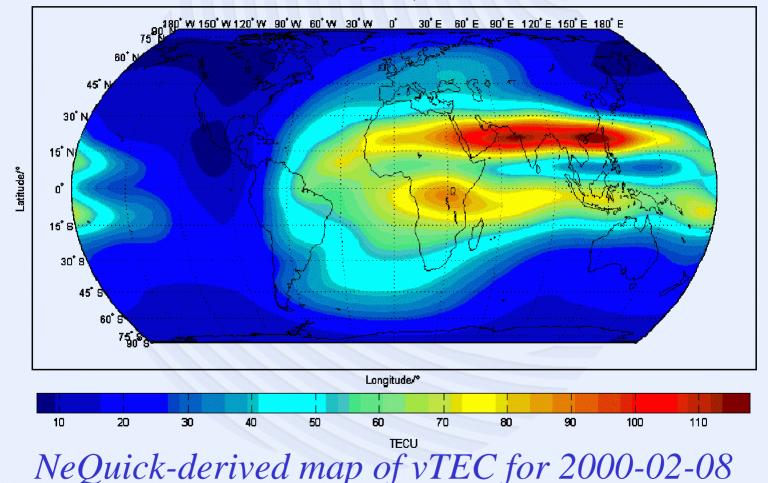



USER RECEIVER

SENSOR STATION





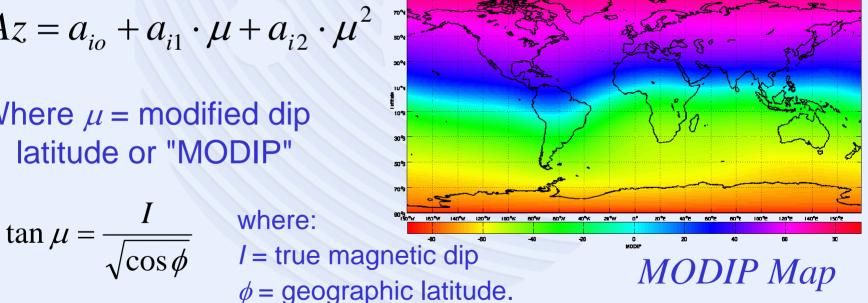


ESWW3 Brussels

Example of Global TEC Map

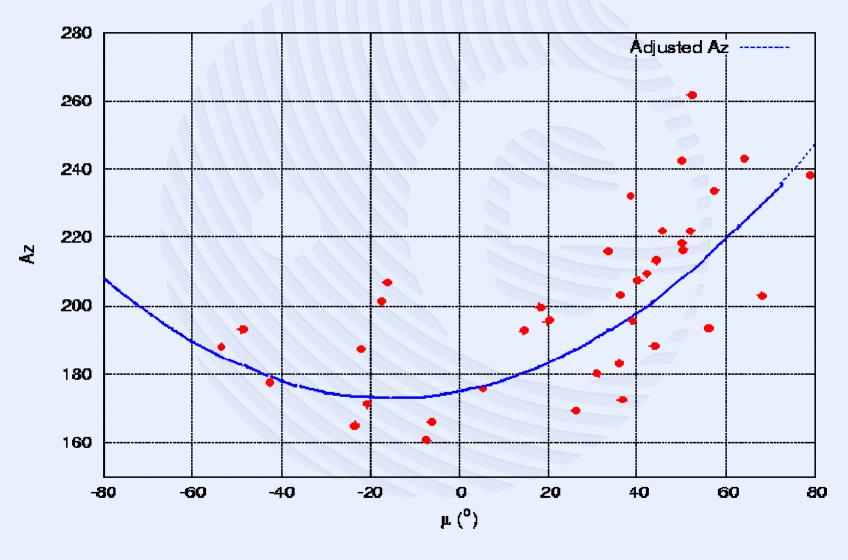
NeQuick Global TEC; 8.Feb.2000

Source: DLR, GSTB-V1 Report


11

GALILEO Single Frequency Message (1) EFFECTIVE IONISATION LEVEL

The effective Ionization level Az replaces solar flux in the NeQuick model. Three coefficients determine the Effective Ionisation Level, Az:


$$Az = a_{io} + a_{i1} \cdot \mu + a_{i2} \cdot \mu^2$$

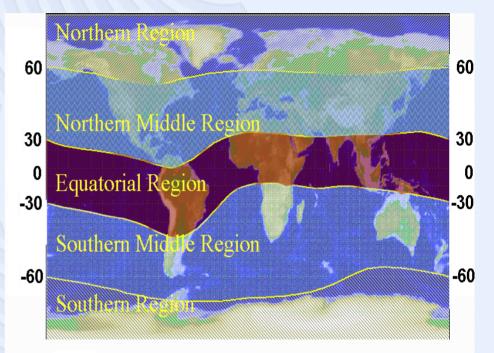
Where μ = modified dip latitude or "MODIP"

The coefficients will be updated at least every 24 hours.

Example for $Az = f(\mu)$

 ESWW3

 Brussels

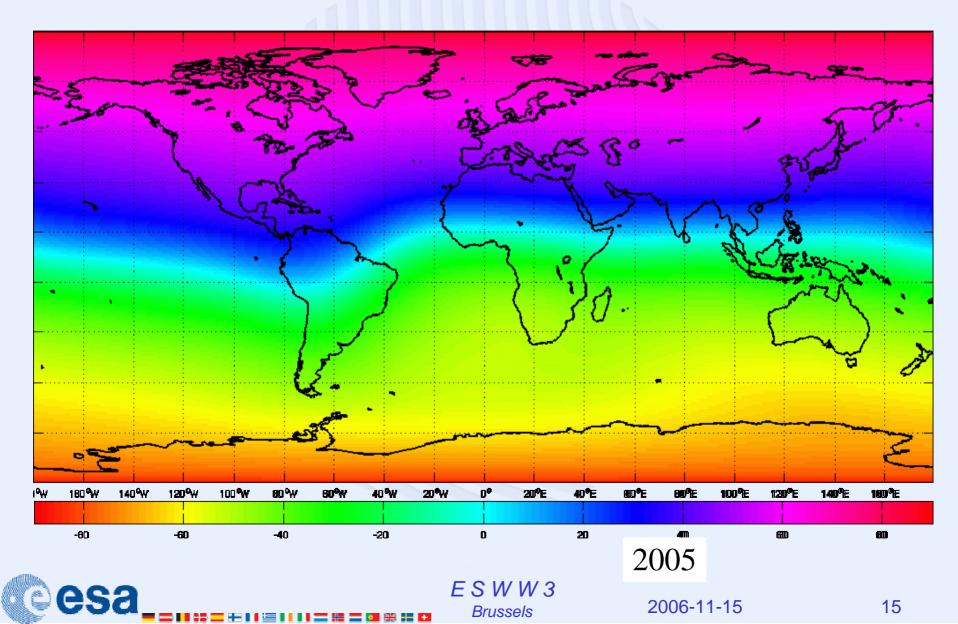

 2006-11-15

13

GALILEO Single Frequency Message (2) IONOSPHERIC DISTURBANCE FLAGS

The "lonospheric Disturbance Flag" alerts the user of a Galileo Receiver in S/F mode to the fact that the ionospheric correction coming from the Galileo broadcast message **might not meet the specified performance**.

The disturbance flags for the five predefined regions will be transmitted continuously and updated with the update rate of the Navigation Message (every 100 minutes).



The 5 Regions defined for the Disturbance Flags (in degrees MODIP) -90 to -60, -60 to -30, -30 to 30, 30-60, 60-90

ESWW3 Brussels

Variability of Mag Field

Galileo SF Receiver inputs

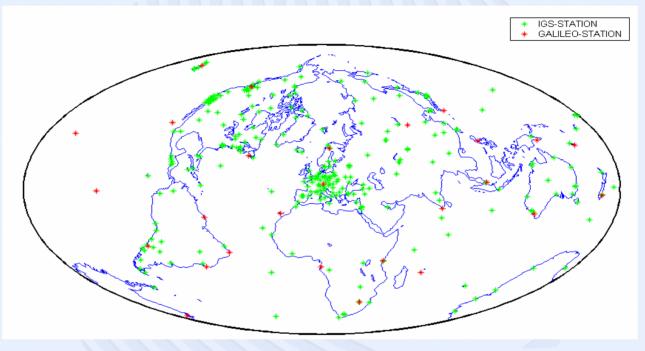
From the Navigation message:

- The Az coefficients a_{i0} , a_{i1} and a_{i2} .
- The lonospheric Disturbance Flag
- The actual time (UT and month of the year)
- Satellite position
- Receiver estimated position (before ionospheric correction).

From the receiver firmware:

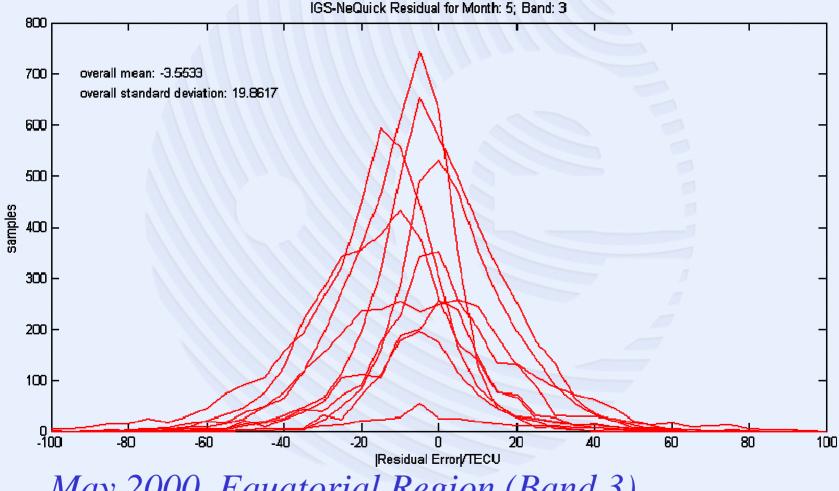
- The DIPLATS matrix, stored in an ASCII file. The DIPLATS matrix should be updated every 5 years (to take account of the natural variation of the Earth's magnetic field). This update shall be considered in the design of the Galileo receivers (MODIP table flash-able in firmware).
- The ITU-R maps for FoF2 and M3000 (F2) files, stored in 12 ASCII files, one for each calendar month.

Galileo S/F receiver algorithm


These steps are performed by single frequency receivers:

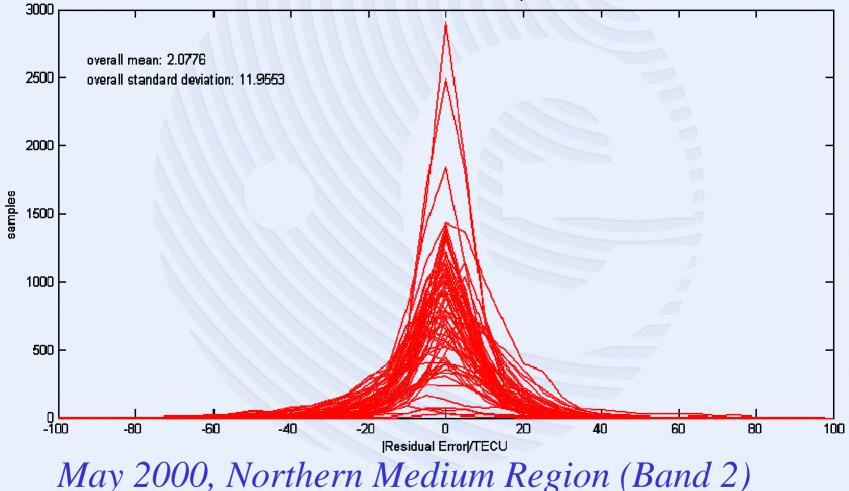
- Az is evaluated using a₀, a₁, a₂ (from nav message) and MODIP calculated from the data inside the DIPLATS matrix from the NeQuick model (which depends on estimated receiver position).
- Electron density is calculated for a point along the satellite to receiver path, using the NeQuick model with Az in place of F10.7.
- Steps 1 and 2 are repeated for many discrete points along the satellite receiver path. The number and spacing of the points will depend on the height and they will be a trade-off between integration error and computational time and power.
- All electron density values along the ray are integrated in order to obtain Slant TEC.
- Slant TEC is converted to slant delay for correcting pseudo-ranges. $\Delta s = 40.3 \times 10^{16} TEC/f^2$ (m)

ESWW3 Brussels


Algorithm Validation using IGS

Some IGS stations were used as reference stations to create the broadcast message, the others were used as "test stations were the SF-algo prediction was compared to the actual slant TEC

Algorithm Validation Results



May 2000, Equatorial Region (Band 3)

Algorithm Validation Results

IGS-NeQuick Residual for Month: 5; Band: 2

Conclusions

- The Correction for Single Frequency receivers is important, even for multi frequency receivers
- The Galileo SF algorithm is based on a 3D lonospheric Model (rather than the thinshell approach of GPS)
- First analyses of the Galileo SF algorithm have shown satisfactory performance

Brussels

